๐—”๐—ฟ๐—ฐ๐—ต๐—ถ๐˜๐—ฒ๐—ฐ๐˜๐—ถ๐—ป๐—ด ๐—ฎ ๐— ๐˜‚๐—น๐˜๐—ถ-๐—˜๐—ป๐—ฒ๐—ฟ๐—ด๐˜† ๐—™๐—ผ๐—ฟ๐—ฒ๐—ฐ๐—ฎ๐˜€๐˜๐—ถ๐—ป๐—ด ๐—ฃ๐—น๐—ฎ๐˜๐—ณ๐—ผ๐—ฟ๐—บ: ๐—” ๐——๐—ผ๐—บ๐—ฎ๐—ถ๐—ป-๐——๐—ฟ๐—ถ๐˜ƒ๐—ฒ๐—ป ๐——๐—ฒ๐˜€๐—ถ๐—ด๐—ป ๐—ฃ๐—ฟ๐—ถ๐—บ๐—ฒ๐—ฟ

In this series, Iโ€™ll present a step-by-step guide to designing a scalable cloud architecture for a multi-energy, multi-step forecasting platform.

This first post focuses on applying Domain-Driven Design (DDD) to structure the problem space and lay the foundation for implementation.

Drawing from the 2025 paper โ€œA Multi-Energy Meta-Model Strategy for Multi-Step Ahead Energy Load Forecastingโ€ (Mystakidis et al.), I explore how the forecasting challenge can be modeled through:

โœ… Identifying the core domain
โœ… Defining bounded contexts (Feature Engineering, Forecast Modeling, Forecast Serving)
โœ… Mapping out domain aggregates
โœ… Designing a component-level UML architecture based on these concepts

The goal of this first delivery is to demonstrate how a forecasting strategy can be clarified and prepared for scalable implementation โ€” before writing any code.



Leave a comment